If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-8t+50=0
a = -4.9; b = -8; c = +50;
Δ = b2-4ac
Δ = -82-4·(-4.9)·50
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-6\sqrt{29}}{2*-4.9}=\frac{8-6\sqrt{29}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+6\sqrt{29}}{2*-4.9}=\frac{8+6\sqrt{29}}{-9.8} $
| 5x-29=2x-11 | | x-8/3=×-3/5 | | 7b÷12=4.2.b= | | 10-z=0 | | 3x2=4x-5 | | 33-v=237 | | x−17/20=7/10 | | -7(x+5)=-4x-32 | | x−1720=710 | | 4x+13=97 | | (x–5)3+1=(x+4)(x–4)(x–15) | | -2/1/2x+1/3/5=-1/3/10 | | -21/2x+13/5=-13/10 | | -12x+6=11 | | -3/2=-2/5v-5/3 | | -5/2-2+4=-1/5u-1/2 | | 12y+4=16 | | 5+2x-10(3x+1)=-13 | | (3x+10)=(5x+-10) | | 4m/7=3/14 | | -5+2y/2=3/4 | | 3x-12=x+9 | | 7x-95=13x+67 | | 6(y-8)-2=-5(-5y+9)-9y | | (x-3)^2-10=15 | | 9(2+5y)=18 | | 35a-83=-31 | | 6y-7=41-7y | | 8(3+6b)=24 | | 3/*4x=9 | | 5(x+5)-5=2x+3(5+x) | | 7(4x+12)=21 |